OVERVIEW
e We design a deep neural network to drastically improve LASSO speed and quality.

e Our network has fewer parameters and is easier to train.

e Our network achieves global linear convergence, better than sublinear and eventual-
linear convergence of ISTA /FISTA.

UNFOLD ISTA TO NEURAL NETWORK

Problem: Recover a sparse vector z* from its noisy measurements:

b= Ax™ + ¢,

LASSO:

1
minimize 5 16— Az||3 + M|z

Iterative shrinkage thresholding algorithm (ISTA) or FPC:

|
AR (:Ck AT (b A:Ek)), E=0,1.2,... (ISTA)

where 7y is soft-thresholding, A\ and L are selected by hand or cross-validation. ISTA
converges sublinearly and eventually-linearly to a LASSO solution, not z*.

Neural network: unrolls ISTA to a feed-forward neural network, replace A, A* in ISTA
by free matrices, and truncates it to K iterations (known as Learned ISTA or LISTA [1]):

oF T = 0o (Wb + WEak), k=0,1,- -

7K_17

(LISTA)

Inputs are z° and b. Output z** is our recovery.

Training (deciding 0%, W, W5) For fixed A, we want to obtain parameters O% =
{(WE Wk 6F)} 7" such that 2% is close to x* (the ground truth) for input b = Az*+-¢ for
almost all z*, ¢ following certain distribution. In another word, given the distributions of

x* and ¢, we
.. 1
minimize §E5E*,€HaﬁK (@K, b, :130) —x"

2
5"

Stochastic gradient descent (SGD) can be applied to solve the above minimization prob-
lem. The gradient of z* on ©% can be obtained by the chain rule (back propagation).

Issues:

largely many free parameters, training is slow
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IMPROVE BY WEIGHT COUPLING (CP)

New idea: exploit certain dependencies among W, WX 0% to simplify the network and
improve the recovery result.

Theorem 1 (Necessary Condition) Suppose K = oo and there is no noise e = 0. Let {x*}%,
be generated by (LISTA). If z*(©%,b,2°) — x* as k — oo uniformly for all sparse =*, then the
parameters {Wy, W5, 05122 are not independent to each other but must satisfy

Wy —(I—-WFA) =0, 6°—0, ask— co. (1)

Weight simplification: Couple W5 = I — W A and simplify LISTA to:

ZFH = (a:k L WE®D — Axk)), k=01, K—1. (LISTA-CP)

Now, only ©F = {WF 6%}~ ! need to be trained, yet recovery is still fast.

Theorem 2 (LISTA-CP trainability) Suppose K = oo and let {x"}3°, be generated by
(LISTA-CP). There exists a sequence of parameters {W{, 0%} such that

|2 (0%, b,2°) — 2*||2 < Oy exp(—ck) + Cao, VE=1,2,---,

holds for all (x*, €) satisfying some assumptions (see [2]), where c, C1,Cy > 0 are constants that
depend only on A and the distribution of ™, and o 1s the noise level.

If o = 0 (noiseless case), the kth layer output z* converges to z* linearly:

2% — z*[|s < Cre™ ",

IMPROVE BY SUPPORT SELECTION (SS)

Before applying soft thresholding in each layer, trust a percentages of largest entries as
“true support” to bypass thresholding.
PP = P (sc'k L WE(D — Aq;k)), k=01, K—1. (LISTA-CPSS)

Theorem 3 (Convergence of LISTA-CPSS) Suppose K = oo and let {z*}%°, be generated
by (LISTA-CPSS). There exists a sequence of parameters {W{, 0%} such that

k—1
|27 (6%, b,2°) — 2*||]2 < Oy exp ( — Z
t=0
holds for all (z*, €) satisfying some assumptions. The convergence rate is better: ¢% > c for large
enough k. The recovery error is better: Cys < Cs.

NUMERICAL VALIDATION — SUPPORT SELECTION

Validation of support selection:
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NUMERICAL VALIDATION

Data: fix A € R*0*°0 4, ~ N(0,1). Columns of A are normalized. Sample z* with
10% nonzeros, each from the normal distribution. All plots below used the same 1000

samples.

Recovery speeds:

Baseline LISTA vs ISTA:
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Validation of coupled LISTA (0=0): Coupled LISTA (LISTA-CP) achieves linear conver-
gence and stabilize intermediate steps compared to LISTA.

NMSE (dB)
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LISTA with support selection (LISTA-SS) achieves linear convergence and better final performance.

Coupled LISTA with support selection (LISTA-CPSS) yields the best performance.

o = 0 (Noiseless)
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