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OVERVIEW
• We design a deep neural network to drastically improve LASSO speed and quality.

• Our network has fewer parameters and is easier to train.

• Our network achieves global linear convergence, better than sublinear and eventual-
linear convergence of ISTA/FISTA.

UNFOLD ISTA TO NEURAL NETWORK
Problem: Recover a sparse vector x∗ from its noisy measurements:

b = Ax∗ + ε,

LASSO:
minimize

x

1

2
‖b−Ax‖22 + λ‖x‖1

Iterative shrinkage thresholding algorithm (ISTA) or FPC:

xk+1 = ηλ/L

(
xk +

1

L
AT (b−Axk)

)
, k = 0, 1, 2, . . . (ISTA)

where ηθ is soft-thresholding, λ and L are selected by hand or cross-validation. ISTA
converges sublinearly and eventually-linearly to a LASSO solution, not x∗.

Neural network: unrolls ISTA to a feed-forward neural network, replace A,AT in ISTA
by free matrices, and truncates it to K iterations (known as Learned ISTA or LISTA [1]):

xk+1 = ηθk(W k
1 b+W k

2 x
k), k = 0, 1, · · · ,K − 1, (LISTA)

Inputs are x0 and b. Output xK is our recovery.

Training (deciding θk, W k
1 , W k

2 ) For fixed A, we want to obtain parameters ΘK =
{(W k

1 ,W
k
2 , θ

k)}K−1
k=0 such that xK is close to x∗ (the ground truth) for input b = Ax∗+ε for

almost all x∗, ε following certain distribution. In another word, given the distributions of
x∗ and ε, we

minimize
Θ

1

2
Ex∗,ε

∥∥xK(ΘK , b, x0
)
− x∗

∥∥2

2
.

Stochastic gradient descent (SGD) can be applied to solve the above minimization prob-
lem. The gradient of xK on ΘK can be obtained by the chain rule (back propagation).

Issues: largely many free parameters, training is slow

IMPROVE BY WEIGHT COUPLING (CP)
New idea: exploit certain dependencies among W k

1 ,W
k
2 , θ

k to simplify the network and
improve the recovery result.

Theorem 1 (Necessary Condition) SupposeK =∞ and there is no noise ε = 0. Let {xk}∞k=1

be generated by (LISTA). If xk
(
Θk, b, x0

)
→ x∗ as k →∞ uniformly for all sparse x∗, then the

parameters {W k
1 ,W

k
2 , θ

k}∞k=0 are not independent to each other but must satisfy

W k
2 − (I −W k

1 A)→ 0, θk → 0, as k →∞. (1)

Weight simplification: Couple W k
2 = I −W k

1 A and simplify LISTA to:

xk+1 = ηθk
(
xk +W k

1 (b−Axk)
)
, k = 0, 1, · · · ,K − 1. (LISTA-CP)

Now, only Θ̄K = {W k
1 , θ

k}K−1
k=0 need to be trained, yet recovery is still fast.

Theorem 2 (LISTA-CP trainability) Suppose K = ∞ and let {xk}∞k=1 be generated by
(LISTA-CP). There exists a sequence of parameters {W k

1 , θ
k} such that

‖xk
(
Θ̄k, b, x0

)
− x∗‖2 ≤ C1 exp(−ck) + C2σ, ∀k = 1, 2, · · · ,

holds for all (x∗, ε) satisfying some assumptions (see [2]), where c, C1, C2 > 0 are constants that
depend only on A and the distribution of x∗, and σ is the noise level.

If σ = 0 (noiseless case), the kth layer output xk converges to x∗ linearly:

‖xk − x∗‖2 ≤ C1e
−ck.

IMPROVE BY SUPPORT SELECTION (SS)
Before applying soft thresholding in each layer, trust a percentages of largest entries as
“true support” to bypass thresholding.

xk+1 = ηss
pk

θk

(
xk +W k

1 (b−Axk)
)
, k = 0, 1, · · · ,K − 1. (LISTA-CPSS)

Theorem 3 (Convergence of LISTA-CPSS) Suppose K = ∞ and let {xk}∞k=1 be generated
by (LISTA-CPSS). There exists a sequence of parameters {W k

1 , θ
k} such that

‖xk
(
Θ̄k, b, x0

)
− x∗‖2 ≤ C1 exp

(
−
k−1∑
t=0

c̃tss

)
+ C̃ssσ, ∀k = 1, 2, · · · ,

holds for all (x∗, ε) satisfying some assumptions. The convergence rate is better: c̃kss > c for large
enough k. The recovery error is better: C̃ss < C2.

NUMERICAL VALIDATION

Data: fix A ∈ <250×500, Aij ∼ N(0, 1). Columns of A are normalized. Sample x∗ with
10% nonzeros, each from the normal distribution. All plots below used the same 1000
samples.

Recovery speeds: ISTA�LISTA[1]<LISTA-CP[2]<LISTA-CPSS[2]
Baseline LISTA vs ISTA:
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Validation of coupled LISTA (σ=0): Coupled LISTA (LISTA-CP) achieves linear conver-
gence and stabilize intermediate steps compared to LISTA.
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NUMERICAL VALIDATION — SUPPORT SELECTION
Validation of support selection:
LISTA with support selection (LISTA-SS) achieves linear convergence and better final performance.
Coupled LISTA with support selection (LISTA-CPSS) yields the best performance.

σ = 0 (Noiseless)
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σ2 ≈ 2× 10−4 (SNR=30dB)
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